
Pre-class Warm-up
With reference to the picture on the right, 
what is the sum

called?

a.  a Cauchy sum

b.  a Newton sum

c.  a Dedekind sum

d.  a Riemann sum

e.  Some other kind of sum
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Sections 5.1 and 5.2: double integrals over 
rectangles

We learn
• Different notations for the double integral
• Interpretation as volume under the graph
• Interpretation as volume swept out by a 

slice (Cavalieri’s principle)
• Proper definition using Riemann sums
• Some theoretical things: continuous 

implies integrable, bounded with restrict 
discontinuities implies integrable

• Fubini’s theorem
• How to calculate integrals

Examples:  a. Find       x^2y + y^3 dx dy

b. Find        x^2y + y^3 dA

where  R  is the rectangle  [-1,1] x [1,2]

c. Find the volume under the graph of  
f(x,y) = x^2y + y^3  above the rectangle  
[-1,1] x [1,2]
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Examples:  a. Find       x^2y + y^3 dx dy
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Cavalieri’s Principle pointing in another direction .

the volume of a satia is the
integral of the cross-sectional
area with respect to a coordinate
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Informal Fubini’s theorem.

What’s wrong with this?
We don’t yet know what we mean by the 
volume under the graph. 
We don’t have a proper definition of the 
integral.

Examples:  a. Find       x^2y + y^3 dydx/ 3
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Question:

What is     

a.  0

b.  1

c.  2

d.  4

e.  1/2
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Riemann sums
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We say the function  f(x,y)  is integrable if

Regular partition:
n  equally spaced points.

The Rieman sum is
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What we do using Riemann sums

• We get a definition of the integral that 
does not depend on the order in which 
we do  x  and  y.

• We get a proper definition of volume 
under the graph.

• We show that continuous functions are 
integrable.

• We show that continuous functions apart 
from discontinuities that lie on curves 
that are the graphs of functions are 
integrable.

• We prove Fubini’s theorem
• We establish formal properties of the 

integral


