Pre-class Warm-up
With reference to the picture on the right, what is the sum
called?
a. a Cauchy sum
b. a Newton sum
c. a Dedekind sum
d. a Riemann sum
e. Some other kind of sum

Exam 1 is an Tuesday next week in the discussion session,

Sections 5.1 and 5.2: double integrals over rectangles

We learn

- Different notations for the double integral
- Interpretation as volume under the graph
- Interpretation as volume swept out by a slice (Cavalieri's principle)
- Proper definition using Riemann sums
- Some theoretical things: continuous implies integrable, bounded with restrict discontinuities implies integrable
- Fubini's theorem
- How to calculate integrals

Upshot:
The following three excomples describe exactly the same integral.

Examples: a. Find $\int_{1}^{2}\left(\int_{-1}^{1} x^{\wedge} 2 y+y^{\wedge} 3 d x\right) d y$
b. Find $\iint_{R} x^{\wedge} 2 y+y^{\wedge} 3 d A$
where R is the rectangle $[-1,1] \times[1,2]$

$$
=\{(x, y) \mid x \in[-1,1], y \in[1,2]\}
$$

c. Find the volume under the graph of $f(x, y)=x^{\wedge} 2 y+y^{\wedge} 3$ above the rectangle $[-1,1] \times[1,2]$

Examples: a. Find $\int_{1}^{2}\left(\int_{-1}^{1} x^{\wedge} 2 \cdot y+y^{\wedge} 3 d x\right) d y$
Solution: We integrate first withreepect to
x to get $\int_{1}^{2}\left[\frac{x^{3} y}{3}+x y^{3}\right]_{-1}^{1} d y$

$$
=\int_{1}^{2}\left(\frac{2}{3} y+2 y^{3}\right) d y=\left[\frac{2 y^{2}}{3}+\frac{1}{2} y^{4}\right]_{1}^{2}
$$

$$
=\frac{3}{3}+\frac{15}{2}=8 \frac{1}{2}
$$

$A(y)=\int_{-1}^{1} f(x, y) d x$ at y is the area under the graph of $f(x, y)$ with y fixed, as a functum of x. Adding the thin volumes $A(y) \triangle y$ gives approximately the volume undegrabt?

Cavalieri's Principle

pointing in another direction.

The volume of a solid is the integral of the cross-sectival area with respect to a cooreinale

Examples: a. Find $\int_{-1}^{1}\left(\int_{1}^{2} x^{\wedge} 2 y+y^{\wedge} 3 d y\right) d x$

$$
\begin{aligned}
& =\int_{-1}^{1}\left[\frac{x^{2} y^{2}}{2}+\frac{y^{4}}{4}\right]_{1}^{2} d x \\
& =\int_{-1}^{1}\left(\frac{3 x^{2}}{2}+\frac{15}{4}\right) d x=\left[\frac{x^{3}}{2}+\frac{15 x}{4}\right]_{-1}^{1} \\
& =\frac{1}{2}+\frac{1}{2}+\frac{15}{4}+\frac{15}{4}=8 \frac{2}{2}
\end{aligned}
$$

We first find the area of the orange lamina

Informal Fubini's theorem.

$$
\iint f d x d y=\iint f d y d x
$$

What's wrong with this?
We don't yet know what we mean by the volume under the graph.
We don't have a proper definition of the integral.

Question:
What is
a. 0

$$
\int_{1}^{2} \int_{-1}^{1} d x d y ?
$$

$$
=\text { area of }[-1,1] \times[1,2]
$$

b. 1

$$
\approx 2
$$

c. 2
d. 4
e. $1 / 2$

Riemann sums

The Remands sum is

$$
\sum_{\substack{\text { everitiong } \\ i, 1}}^{i} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)
$$

We say the function $f(x, y)$ is integrable if as the $x_{L}-x_{L-1}, y_{j}-y_{j-1} \rightarrow 0$ The Riemann sums \rightarrow some definite number allowing for all possible c_{i}
This number is the integral

- We get a definition of the integral that does not depend on the order in which we do x and y.
- We get a proper definition of volume under the graph.
- We show that continuous functions are integrable.
- We show that continuous functions apart from discontinuities that lie on curves that are the graphs of functions are integrable.
- We prove Fubini's theorem
- We establish formal properties of the integral

